Nadja Grobe, MS, PhD

Manager of Laboratory Research

Nadja Grobe

Nadja received her MS and PhD in biochemistry from the Martin Luther University Halle-Wittenberg, Germany. Prior to joining RRI in 2017, she gained more than 10 years of experience in guiding and implementing chemistry, biochemistry, and biomedical-focused research teams in nonprofit, academia, and government. Her previous research has been funded by the American Heart Association, the National Institutes of Health, and the American Society of Nephrology. Her expertise encompasses all aspects of research development, execution, and analysis. At RRI, Nadja is instrumental in designing and validating experimental strategies for improved therapeutic studies in nephrology and related fields. She supports many ongoing RRI research projects and the initiation of new lines of laboratory research.

Contact Information:

Recent Articles by Nadja Grobe

  • Journal of the American Society of Nephrology
    April 5, 2024
    Testing of Worn Face Masks for Timely Diagnosis of SARS-CoV-2 in Hemodialysis Patients
    Xiaoling Wang, Nadja Grobe, Zahin Haq, Ohnmar Thwin, Lemuel Rivera Fuentes, Dugan Maddux, Peter Kotanko
    No abstract available
  • Journal of the American Society of Nephrology
    April 3, 2024
    Presence of SARS-CoV-2 Antibodies in Spent Peritoneal Dialysate
    Xiaoling Wang, Nadja Grobe, Amrish Patel, Shuchita Sharma, Jaime Uribarri, Peter Kotanko
    No abstract available
  • Frontiers in cell and developmental biology
    March 30, 2024
    The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights From Basic Research and Mathematical Modeling
    Gabriela Ferreira Dias, Nadja Grobe, Sabrina Rogg, David J Jörg, Roberto Pecoits-Filho, Andréa Novais Moreno-Amaral, Peter Kotanko
    Red blood cells (RBC) are the most abundant cells in the blood. Despite powerful defense systems against chemical and mechanical stressors, their life span is limited to about 120 days in healthy humans and further shortened in patients with kidney failure. Changes in the cell membrane potential and cation permeability trigger a cascade of events that lead to exposure of phosphatidylserine on the outer leaflet of the RBC membrane. The translocation of phosphatidylserine is an important step in a process that eventually results in eryptosis, the programmed death of an RBC. The regulation of eryptosis is complex and involves several cellular pathways, such as the regulation of non-selective cation channels. Increased cytosolic calcium concentration results in scramblase and floppase activation, exposing phosphatidylserine on the cell surface, leading to early clearance of RBCs from the circulation by phagocytic cells. While eryptosis is physiologically meaningful to recycle iron and other RBC constituents in healthy subjects, it is augmented under pathological conditions, such as kidney failure. In chronic kidney disease (CKD) patients, the number of eryptotic RBC is significantly increased, resulting in a shortened RBC life span that further compounds renal anemia. In CKD patients, uremic toxins, oxidative stress, hypoxemia, and inflammation contribute to the increased eryptosis rate. Eryptosis may have an impact on renal anemia, and depending on the degree of shortened RBC life span, the administration of erythropoiesis-stimulating agents is often insufficient to attain desired hemoglobin target levels. The goal of this review is to indicate the importance of eryptosis as a process closely related to life span reduction, aggravating renal anemia.
  • Blood purification
    February 16, 2024
    Molecular Insights and Novel Approaches toward Individualized Arteriovenous Fistula Care
    Xin Wang, Leticia M Tapia Silva, Milind Nikam, Sandip Mitra, Syed Shaukat Abbas Zaidi, Nadja Grobe
    The aim of the paper is to summarize the current understanding of the molecular biology of arteriovenous fistula (AVF). It intends to encourage vascular access teams, care providers, and scientists, to explore new molecular tools for assessing the suitability of patients for AVF as vascular access for maintenance hemodialysis (HD). This review also highlights most recent discoveries and may serve as a guide to explore biomarkers and technologies for the assessment of kidney disease patients choosing to start kidney replacement therapy. Objective criteria for AVF eligibility are lacking partly because the underlying physiology of AVF maturation is poorly understood. Several molecular processes during a life cycle of an AVF, even before creation, can be characterized by measuring molecular fingerprints using newest "omics" technologies. In addition to hypothesis-driven strategies, untargeted approaches have the potential to reveal the interplay of hundreds of metabolites, transcripts, proteins, and genes underlying cardiovascular adaptation and vascular access-related adjustments at any given timepoint of a patient with kidney disease. As a result, regular monitoring of modifiable, molecular risk factors together with clinical assessment could help to reduce AVF failure rates, increase patency, and improve long-term outcomes. For the future, identification of vulnerable patients based on the assessment of biological markers of AVF maturation at different stages of the life cycle may aid in individualizing vascular access recommendations.
  • Frontiers in public health
    February 10, 2024
    Testing of worn face mask and saliva for SARS-CoV-2
    Xiaoling Wang, Ohnmar Thwin, Zahin Haq, Zijun Dong, Lela Tisdale, Lemuel Rivera Fuentes, Nadja Grobe, Peter Kotanko
    RESULTSMask and saliva testing specificities were 99% and 100%, respectively. Test sensitivity was 62% for masks, and 81% for saliva (p = 0.16). Median viral RNA shedding duration was 11 days and longer in immunocompromised versus non-immunocompromised patients (22 vs. 11 days, p = 0.06, log-rank test).CONCLUSIONWhile SARS-CoV-2 testing on worn masks appears to be less sensitive compared to saliva, it may be a preferred screening method for individuals who are mandated to wear masks yet averse to more invasive sampling. However, optimized RNA extraction methods and automated procedures are warranted to increase test sensitivity and scalability. We corroborated longer viral RNA shedding in immunocompromised patients.BACKGROUNDExhaled SARS-CoV-2 can be detected on face masks. We compared tests for SARS-CoV-2 RNA on worn face masks and matched saliva samples.METHODSWe conducted this prospective, observational, case-control study between December 2021 and March 2022. Cases comprised 30 in-center hemodialysis patients with recent COVID-19 diagnosis. Controls comprised 13 hemodialysis patients and 25 clinic staff without COVID-19 during the study period and the past 2 months. Disposable 3-layer masks were collected after being worn for 4 hours together with concurrent saliva samples. ThermoFisher COVID-19 Combo Kit (A47814) was used for RT-PCR testing.
  • Kidney360
    December 5, 2023
    Removal of Middle Molecules and Dialytic Albumin Loss: A Cross-over Study of Medium Cutoff and High-Flux Membranes with Hemodialysis and Hemodiafiltration
    Armando Armenta-Alvarez, Salvador Lopez-Gil, Iván Osuna, Nadja Grobe, Xia Tao, Gabriela Ferreira Dias, Xiaoling Wang, Joshua Chao, Jochen G Raimann, Stephan Thijssen, Hector Perez-Grovas, Bernard Canaud, Peter Kotanko, Magdalena Madero
    RESULTSTwelve anuric patients were studied (six female patients; 44±19 years; dialysis vintage 35.2±28 months). The blood flow was 369±23 ml/min, dialysate flow was 495±61 ml/min, and ultrafiltration volume was 2.8±0.74 L. No significant differences were found regarding the removal of B2M, vitamin B12, and water-soluble solutes between dialytic modalities and dialyzers. Albumin and total protein loss were significantly higher in MCO groups than HFX groups when compared with the same modality. HDF groups had significantly higher albumin and total protein loss than HD groups when compared with the same dialyzer. MCO-HDF showed the highest protein loss among all groups.KEY POINTSHDF and MCO have shown greater clearance of middle-size uremic solutes in comparison with HF dialyzers; MCO has never been studied in HDF. MCO in HDF does not increase the clearance of B2M and results in a higher loss of albumin.CONCLUSIONSMCO-HD is not superior to HFX-HD and HFX-HDF for both middle molecule and water-soluble solute removal. Protein loss was more pronounced with MCO when compared with HFX on both HD and HDF modalities. MCO-HDF has no additional benefits regarding better removal of B2M but resulted in greater protein loss than MCO-HD.BACKGROUNDMiddle molecule removal and albumin loss have been studied in medium cutoff (MCO) membranes on hemodialysis (HD). It is unknown whether hemodiafiltration (HDF) with MCO membranes provides additional benefit. We aimed to compare the removal of small solutes and β2-microglobulin (B2M), albumin, and total proteins between MCO and high-flux (HFX) membranes with both HD and HDF, respectively.METHODSThe cross-over study comprised 4 weeks, one each with postdilutional HDF using HFX (HFX-HDF), MCO (MCO-HDF), HD with HFX (HFX-HD), and MCO (MCO-HD). MCO and HFX differ with respect to several characteristics, including membrane composition, pore size distribution, and surface area (HFX, 2.5 m2; MCO, 1.7 m2). There were two study treatments per week, one after the long interdialytic interval and another midweek. Reduction ratios of vitamin B12, B2M, phosphate, uric acid, and urea corrected for hemoconcentration were computed. Dialysis albumin and total protein loss during the treatment were quantified from dialysate samples.
  • Toxins
    September 1, 2023
    Bisphenol A and Bisphenol S in Hemodialyzers
    Zahin Haq, Xin Wang, Qiuqiong Cheng, Gabriela F Dias, Christoph Moore, Dorothea Piecha, Peter Kotanko, Chih-Hu Ho, Nadja Grobe
    Bisphenol A (BPA)-based materials are used in the manufacturing of hemodialyzers, including their polycarbonate (PC) housings and polysulfone (PS) membranes. As concerns for BPA's adverse health effects rise, the regulation on BPA exposure is becoming more rigorous. Therefore, BPA alternatives, such as Bisphenol S (BPS), are increasingly used. It is important to understand the patient risk of BPA and BPS exposure through dialyzer use during hemodialysis. Here, we report the bisphenol levels in extractables and leachables obtained from eight dialyzers currently on the market, including high-flux and medium cut-off membranes. A targeted liquid chromatography-mass spectrometry strategy utilizing stable isotope-labeled internal standards provided reliable data for quantitation with the standard addition method. BPA ranging from 0.43 to 32.82 µg/device and BPS ranging from 0.02 to 2.51 µg/device were detected in dialyzers made with BPA- and BPS-containing materials, except for the novel FX CorAL 120 dialyzer. BPA and BPS were also not detected in bloodline controls and cellulose-based membranes. Based on the currently established tolerable intake (6 µg/kg/day), the resulting margin of safety indicates that adverse effects are unlikely to occur in hemodialysis patients exposed to BPA and BPS quantified herein. With increasing availability of new data and information about the toxicity of BPA and BPS, the patient safety limits of BPA and BPS in those dialyzers may need a re-evaluation in the future.
  • Blood purification
    July 27, 2023
    Gut Microbiome-Derived Uremic Toxin Levels in Hemodialysis Patients on Different Phosphate Binder Therapies
    Lin-Chun Wang, Leticia M Tapia, Xia Tao, Joshua E Chao, Ohnmar Thwin, Hanjie Zhang, Stephan Thijssen, Peter Kotanko, Nadja Grobe
    RESULTSThe SEV group reported a 3.3-fold higher frequency of BSS stool types 1 and 2 (more likely constipated, p < 0.05), whereas the SFO group reported a 1.5-fold higher frequency of BSS stool types 5-7 (more likely loose stool and diarrhea, not significant). Participants in the SFO group showed a trend toward better adherence to phosphate binder therapy (SFO: 87.6% vs. SEV: 66.6%, not significant). UTOX, serum phosphorus, nutritional and liver function markers, and tryptophan were not different between the two groups.CONCLUSIONThere was no difference in the gut microbiome-derived UTOX levels between phosphate binders (SFO vs. SEV), despite SFO therapy resulting in fewer constipated participants. This pilot study may inform study design of future clinical trials and highlights the importance of including factors beyond bowel habits and their association with UTOX levels.INTRODUCTIONConstipation is prevalent in patients with kidney failure partly due to the use of medication, such as phosphate binders. We hypothesized that serum levels of gut microbiome-derived uremic toxins (UTOX) may be affected by the choice of phosphate binder putatively through its impact on colonic transit time. We investigated two commonly prescribed phosphate binders, sevelamer carbonate (SEV) and sucroferric oxyhydroxide (SFO), and their association with gut microbiome-derived UTOX levels in hemodialysis (HD) patients.METHODSWeekly blood samples were collected from 16 anuric HD participants during the 5-week observational period. All participants were on active phosphate binder monotherapy with either SFO or SEV for at least 4 weeks prior to enrollment. Eight UTOX (7 gut microbiome-derived) and tryptophan were quantified using liquid chromatography-mass spectrometry. Serum phosphorus, nutritional, and liver function markers were also measured. For each substance, weekly individual levels, the median concentration per participant, and differences between SFO and SEV groups were reported. Patient-reported bowel movements, by the Bristol Stool Scale (BSS), and pill usage were assessed weekly.
  • Advances in kidney disease and health
    April 17, 2023
    Omics and Artificial Intelligence in Kidney Diseases
    Nadja Grobe, Josef Scheiber, Hanjie Zhang, Christian Garbe, Xiaoling Wang
    Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
  • Kidney360
    February 3, 2023
    SARS-CoV-2 in Spent Dialysate from Chronic Peritoneal Dialysis Patients with COVID-19
    Xiaoling Wang, Amrish Patel, Lela Tisdale, Zahin Haq, Xiaoling Ye, Rachel Lasky, Priscila Preciado, Xia Tao, Gabriela Ferreira Dias, Joshua E Chao, Mohamad Hakim, Maggie Han, Ohnmar Thwin, Jochen Raimann, Dinesh Chatoth, Peter Kotanko, Nadja Grobe
    RESULTSA total of 26 spent PD dialysate samples were collected from 11 patients from ten dialysis centers. Spent PD dialysate samples were collected, on average, 25±13 days (median, 20; range, 10-45) after the onset of symptoms. The temporal distance of PD effluent collection relative to the closest positive nasal-swab RT-PCR result was 15±11 days (median, 14; range, 1-41). All 26 PD effluent samples tested negative at three SARS-CoV-2 genomic regions.CONCLUSIONSOur findings indicate the absence of SARS-CoV-2 in spent PD dialysate collected at ≥10 days after the onset of COVID-19 symptoms. We cannot rule out the presence of SARS-CoV-2 in spent PD dialysate in the early stage of COVID-19.BACKGROUNDTo date, it is unclear whether SARS-CoV-2 is present in spent dialysate from patients with COVID-19 on peritoneal dialysis (PD). Our aim was to assess the presence or absence of SARS-CoV-2 in spent dialysate from patients on chronic PD who had a confirmed diagnosis of COVID-19.METHODSSpent PD dialysate samples from patients on PD who were positive for COVID-19 were collected between March and August 2020. The multiplexed, real-time RT-PCR assay contained primer/probe sets specific to different SARS-CoV-2 genomic regions and to bacteriophage MS2 as an internal process control for nucleic acid extraction. Demographic and clinical data were obtained from patients' electronic health records.
  • Cell biochemistry and function
    December 21, 2022
    Effect of hypoxia and uremia on oxidative stress on erythrocytes from hemodialysis patients
    Gabriela F Dias, Sara S Tozoni, Gabriela Bohnen, Beatriz A K van Spitzenbergen, Nadja Grobe, Lia S Nakao, Roberto Pecoits-Filho, Peter Kotanko, Andréa N Moreno-Amaral
    Oxidative stress (OS) is essential in uremia-associated comorbidities, including renal anemia. Complications experienced by hemodialysis (HD) patients, such as hypoxemia and uremic toxins accumulation, induce OS and premature death of red blood cells (RBC). We aimed to characterize reactive oxygen species (ROS) production and antioxidant pathways in HD-RBC and RBC from healthy controls (CON-RBC) and evaluate the role of uremia and hypoxia in these pathways. ROS production, xanthine oxidase (XO) and superoxide dismutase (SOD) activities, glutathione (GSH), and heme oxygenase-1 (HO-1) levels were measured using flow cytometry or spectrophotometry in CON-RBC and HD-RBC (pre- and post-HD), at baseline and after 24 h incubation with uremic serum (S-HD) and/or under hypoxic conditions (5% O2 ). Ketoprofen was used to inhibit RBC uremic toxins uptake. HD-RBC showed higher ROS levels and lower XO activity than CON-RBC, particularly post-HD. GSH levels were lower, while SOD activity and HO-1 levels of HD-RBC were higher than control. Hypoxia per se triggered ROS production in CON-RBC and HD-RBC. S-HD, on top of hypoxia, increased ROS levels. Inhibition of uremic toxins uptake attenuated ROS of CON and HD-RBC under hypoxia and uremia. CON-RBC in uremia and hypoxia showed lower GSH levels than cells in normoxia and non-uremic conditions. Redox mechanisms of HD-RBC are altered and prone to oxidation. Uremic toxins and hypoxia play a role in unbalancing these systems. Hypoxia and uremia participate in the pathogenesis of OS in HD-RBC and might induce RBC death and thus compound anemia.
  • Frontiers in nephrology
    September 17, 2022
    SARS-CoV-2 neutralizing antibody response after three doses of mRNA1273 vaccine and COVID-19 in hemodialysis patients
    Xiaoling Wang, Maggie Han, Lemuel Rivera Fuentes, Ohnmar Thwin, Nadja Grobe, Kevin Wang, Yuedong Wang, Peter Kotanko
    RESULTSForty-two patients had three doses of mRNA1273. Compared to levels prior to the third dose, nAb-WT increased 18-fold (peak at day 23) and nAb-Omicron increased 23-fold (peak at day 24) after the third dose. Peak nAb-WT exceeded peak nAb-Omicron 27-fold. Twenty-one patients had COVID-19 between December 24, 2021, and February 2, 2022. Following COVID-19, nAb-WT and nAb-Omicron increased 12- and 40-fold, respectively. While levels of vaccinal and post-COVID nAb-WT were comparable, post-COVID nAb-Omicron levels were 3.2 higher than the respective peak vaccinal nAb-Omicron. Four immunocompromised patients having reasons other than end-stage kidney disease have very low to no nAb after the third dose or COVID-19.CONCLUSIONSOur results suggest that most hemodialysis patients have a strong humoral response to the third dose of vaccination and an even stronger post-COVID-19 humoral response. Nevertheless, nAb levels clearly decay over time. These findings may inform ongoing discussions regarding a fourth vaccination in hemodialysis patients.BACKGROUNDIn hemodialysis patients, a third vaccination is frequently administered to augment protection against coronavirus disease 2019 (COVID-19). However, the newly emerged B.1.1.159 (Omicron) variant may evade vaccinal protection more easily than previous strains. It is of clinical interest to better understand the neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants after booster vaccine or COVID-19 infection in these mostly immunocompromised patients.METHODSHemodialysis patients from four dialysis centers were recruited between June 2021 and February 2022. Each patient provided a median of six serum samples. SARS-CoV-2 neutralizing antibodies (nAbs) against wild type (WT) or Omicron were measured using the GenScript SARS-CoV-2 Surrogate Virus Neutralization Test Kit.
  • Clinical microbiology and infection
    September 17, 2022
    Sample pooling: burden or solution
    Nadja Grobe, Alhaji Cherif, Xiaoling Wang, Zijun Dong, Peter Kotanko
    AIMSThis narrative review aims to provide a comprehensive overview of the global efforts to implement pool testing, specifically for COVID-19 screening.SOURCESData were retrieved from a detailed search for peer-reviewed articles and preprint reports using Medline/PubMed, medRxiv, Web of Science, and Google up to 21st March 2021, using search terms "pool testing", "viral", "serum", "SARS-CoV-2" and "COVID-19".IMPLICATIONSThe theory of pool testing is well understood and numerous successful examples from the past are available. Operationalization of pool testing requires sophisticated processes that can be adapted to the local medical circumstances. Special attention needs to be paid to sample collection, sample pooling, and strategies to avoid re-sampling.CONTENTThis review summarizes the history and theory of pool testing. We identified numerous peer-reviewed articles that describe specific details and practical implementation of pool testing. Successful examples as well as limitations of pool testing, in general and specifically related to the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies, are reviewed. While promising, significant operational, pre-analytical, logistical, and economic challenges need to be overcome to advance pool testing.BACKGROUNDPool-testing strategies combine samples from multiple people and test them as a group. A pool-testing approach may shorten the screening time and increase the test rate during times of limited test availability and inadequate reporting speed. Pool testing has been effectively used for a wide variety of infectious disease screening settings. Historically, it originated from serological testing in syphilis. During the current coronavirus disease 2019 (COVID-19) pandemic, pool testing is considered across the globe to inform opening strategies and to monitor infection rates after the implementation of interventions.
  • FASEB bioAdvances
    July 16, 2022
    The Piezo1 hypothesis of renal anemia
    Peter Kotanko, David J Jörg, Nadja Grobe, Christoph Zaba
    Erythropoietin deficiency is an extensively researched cause of renal anemia. The etiology and consequences of shortened red blood cell (RBC) life span in chronic kidney disease (CKD) are less well understood. Traversing capillaries requires RBC geometry changes, a process enabled by adaptions of the cytoskeleton. These changes are mediated by transient activation of the mechanosensory Piezo1 channel, resulting in calcium influx. Importantly, prolonged Piezo1 activation shortens RBC life span, presumably through activation of calcium-dependent intracellular pathways triggering RBC death. Two Piezo1-activating small molecules, Jedi1 and Jedi2, share remarkable structural similarities with 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a uremic retention solute cleared by the healthy kidney. We hypothesize that in CKD the accumulation of CMPF leads to prolonged activation of Piezo1 (similar in effect to Jedi1 and Jedi2), thus reducing RBC life span. This hypothesis can be tested through bench experiments and, ultimately, by studying the effect of CMPF removal on renal anemia.
  • Cellular physiology and biochemistry
    September 30, 2021
    Uremia and Inadequate Oxygen Supply Induce Eryptosis and Intracellular Hypoxia in Red Blood Cells
    Gabriela Ferreira Dias, Sara Soares Tozoni, Gabriela Bohnen, Nadja Grobe, Silvia D Rodrigues, Tassiana Meireles, Lia S Nakao, Roberto Pecoits-Filho, Peter Kotanko, Andréa Novais Moreno-Amaral
    RESULTSHere, we show that HD-RBC have less intracellular oxygen and that it is further decreased post-HD. Also, incubation in 5% O2 and uremia triggered eryptosis in vitro by exposing PS. Hypoxia itself increased the PS exposure in HD-RBC and CON-RBC, and the addition of uremic serum aggravated it. Furthermore, inhibition of the organic anion transporter 2 with ketoprofen reverted eryptosis and restored the levels of intracellular oxygen. Cytosolic levels of the uremic toxins pCS and IAA were decreased after dialysis.CONCLUSIONThese findings suggest the participation of uremic toxins and hypoxia in the process of eryptosis and intracellular oxygenation.BACKGROUND/AIMSChronic kidney disease is frequently accompanied by anemia, hypoxemia, and hypoxia. It has become clear that the impaired erythropoietin production and altered iron homeostasis are not the sole causes of renal anemia. Eryptosis is a process of red blood cells (RBC) death, like apoptosis of nucleated cells, characterized by Ca2+ influx and phosphatidylserine (PS) exposure to the outer RBC membrane leaflet. Eryptosis can be induced by uremic toxins and occurs before senescence, thus shortening RBC lifespan and aggravating renal anemia. We aimed to assess eryptosis and intracellular oxygen levels of RBC from hemodialysis patients (HD-RBC) and their response to hypoxia, uremia, and uremic toxins uptake inhibition.METHODSUsing flow cytometry, RBC from healthy individuals (CON-RBC) and HD-RBC were subjected to PS (Annexin-V), intracellular Ca2+ (Fluo-3/AM) and intracellular oxygen (Hypoxia Green) measurements, at baseline and after incubation with uremic serum and/or hypoxia (5% O2), with or without ketoprofen. Baseline levels of uremic toxins were quantified in serum and cytosol by high performance liquid chromatography.
  • Kidney medicine
    August 3, 2021
    SARS-CoV-2 Seropositivity Rates in Patients and Clinical Staff in New York City Dialysis Facilities: Association With the General Population
    Ohnmar Thwin, Nadja Grobe, Leticia M Tapia Silva, Xiaoling Ye, Hanjie Zhang, Yuedong Wang, Peter Kotanko
    No abstract available
  • JAMA network open
    December 18, 2020
    Simulation of Pool Testing to Identify Patients With Coronavirus Disease 2019 Under Conditions of Limited Test Availability
    Alhaji Cherif, Nadja Grobe, Xiaoling Wang, Peter Kotanko
    This decision analytical model study examines the feasibility of using pool testing to identify patients with coronavirus disease 2019 (COVID-19) in a setting with limited testing availability.

The RRI is a place where open-minded professionals from different fields and backgrounds work together with the same goal in mind: develop innovative strategies to improve therapies and outcomes for kidney failure patients.

Nadja Grobe, MS, PhD
Manager of Laboratory Research