Stephan Thijssen, MD

Vice President, Applied and Basic Research

Stephan Thijssen

Prior to coming to New York, Stephan worked in the Nephrology Department at the University Hospital Homburg, Germany. He joined RRI in 2005. Stephan brings more than one and a half decades of research experience to the RRI team, covering laboratory research, clinical research, epidemiology research, and mathematical modeling. He has written and published an extensive number of scholarly articles in leading national and international peer-reviewed scientific journals and published several book chapters. Stephan holds 20 patents and has numerous additional pending U.S. and international patents in the field of nephrology. Stephan provides leadership and direction for RRI research activities and directs the planning, development, coordination, and management of RRI research projects.

Recent Articles by Stephan Thijssen, MD

  • Clinical journal of the American Society of Nephrology
    June 11, 2024
    Effects of individualized anemia therapy on hemoglobin stability: a randomized controlled pilot trial in hemodialysis patients
    Doris H Fuertinger, Lin-Chun Wang, David J Jörg, Lemuel Rivera Fuentes, Xiaoling Ye, Sabrina Casper, Hanjie Zhang, Ariella Mermelstein, Alhaji Cherif, Kevin Ho, Jochen G Raimann, Lela Tisdale, Peter Kotanko, Stephan Thijssen
    RESULTSThe intervention group showed an improved median percentage of hemoglobin measurements within target at 47% (IQR 39 to 58), with a 10 percentage points median difference between the two groups (95% CI: 3 to 16; P=0.008). The odds ratio of being within the hemoglobin target in the standard of care group compared to the group receiving the personalized ESA recommendations was 0.68 (95% CI: 0.51 to 0.92). The variability of hemoglobin levels decreased in the intervention group, with the percentage of patients experiencing fluctuating hemoglobin levels being 45% vs 82% in the standard of care group. ESA usage was reduced by about 25% in the intervention group.CONCLUSIONSOur results demonstrated an improved hemoglobin target attainment and variability by employing personalized ESA recommendations using the physiology-based anemia therapy assistance software.BACKGROUNDAnemia is common among hemodialysis patients. Maintaining stable hemoglobin levels within predefined target levels can be challenging, particularly in patients with frequent hemoglobin fluctuations both above and below the desired targets. We conducted a multi-center, randomized, controlled trial comparing our anemia therapy assistance software against a standard population-based anemia treatment protocol. We hypothesized that personalized dosing of erythropoiesis stimulating agents (ESA) improves hemoglobin target attainment.METHODSNinety-six patients undergoing hemodialysis and receiving methoxy polyethylene glycol-epoetin beta were randomized 1:1 to the intervention group (personalized ESA dose recommendations computed by the software) or the standard of care group for twenty-six weeks. The therapy assistance software combined a physiology-based mathematical model and a model predictive controller designed to stabilize hemoglobin levels within a tight target range (10 to 11 g/dl). The primary outcome measure was the percentage of hemoglobin measurements within the target. Secondary outcome measures included measures of hemoglobin variability and ESA utilization.
  • Kidney360
    June 12, 2023
    Removal of Middle Molecules and Dialytic Albumin Loss: A Cross-over Study of Medium Cutoff and High-Flux Membranes with Hemodialysis and Hemodiafiltration
    Armando Armenta-Alvarez, Salvador Lopez-Gil, Iván Osuna, Nadja Grobe, Xia Tao, Gabriela Ferreira Dias, Xiaoling Wang, Joshua Chao, Jochen G Raimann, Stephan Thijssen, Hector Perez-Grovas, Bernard Canaud, Peter Kotanko, Magdalena Madero
    RESULTSTwelve anuric patients were studied (six female patients; 44±19 years; dialysis vintage 35.2±28 months). The blood flow was 369±23 ml/min, dialysate flow was 495±61 ml/min, and ultrafiltration volume was 2.8±0.74 L. No significant differences were found regarding the removal of B2M, vitamin B12, and water-soluble solutes between dialytic modalities and dialyzers. Albumin and total protein loss were significantly higher in MCO groups than HFX groups when compared with the same modality. HDF groups had significantly higher albumin and total protein loss than HD groups when compared with the same dialyzer. MCO-HDF showed the highest protein loss among all groups.KEY POINTSHDF and MCO have shown greater clearance of middle-size uremic solutes in comparison with HF dialyzers; MCO has never been studied in HDF. MCO in HDF does not increase the clearance of B2M and results in a higher loss of albumin.CONCLUSIONSMCO-HD is not superior to HFX-HD and HFX-HDF for both middle molecule and water-soluble solute removal. Protein loss was more pronounced with MCO when compared with HFX on both HD and HDF modalities. MCO-HDF has no additional benefits regarding better removal of B2M but resulted in greater protein loss than MCO-HD.BACKGROUNDMiddle molecule removal and albumin loss have been studied in medium cutoff (MCO) membranes on hemodialysis (HD). It is unknown whether hemodiafiltration (HDF) with MCO membranes provides additional benefit. We aimed to compare the removal of small solutes and β2-microglobulin (B2M), albumin, and total proteins between MCO and high-flux (HFX) membranes with both HD and HDF, respectively.METHODSThe cross-over study comprised 4 weeks, one each with postdilutional HDF using HFX (HFX-HDF), MCO (MCO-HDF), HD with HFX (HFX-HD), and MCO (MCO-HD). MCO and HFX differ with respect to several characteristics, including membrane composition, pore size distribution, and surface area (HFX, 2.5 m2; MCO, 1.7 m2). There were two study treatments per week, one after the long interdialytic interval and another midweek. Reduction ratios of vitamin B12, B2M, phosphate, uric acid, and urea corrected for hemoconcentration were computed. Dialysis albumin and total protein loss during the treatment were quantified from dialysate samples.
  • Scientific reports
    September 26, 2022
    Identification of arterial oxygen intermittency in oximetry data
    Paulo P Galuzio, Alhaji Cherif, Xia Tao, Ohnmar Thwin, Hanjie Zhang, Stephan Thijssen, Peter Kotanko
    In patients with kidney failure treated by hemodialysis, intradialytic arterial oxygen saturation (SaO2) time series present intermittent high-frequency high-amplitude oximetry patterns (IHHOP), which correlate with observed sleep-associated breathing disturbances. A new method for identifying such intermittent patterns is proposed. The method is based on the analysis of recurrence in the time series through the quantification of an optimal recurrence threshold ([Formula: see text]). New time series for the value of [Formula: see text] were constructed using a rolling window scheme, which allowed for real-time identification of the occurrence of IHHOPs. The results for the optimal recurrence threshold were confronted with standard metrics used in studies of obstructive sleep apnea, namely the oxygen desaturation index (ODI) and oxygen desaturation density (ODD). A high correlation between [Formula: see text] and the ODD was observed. Using the value of the ODI as a surrogate to the apnea-hypopnea index (AHI), it was shown that the value of [Formula: see text] distinguishes occurrences of sleep apnea with great accuracy. When subjected to binary classifiers, this newly proposed metric has great power for predicting the occurrences of sleep apnea-related events, as can be seen by the larger than 0.90 AUC observed in the ROC curve. Therefore, the optimal threshold [Formula: see text] from recurrence analysis can be used as a metric to quantify the occurrence of abnormal behaviors in the arterial oxygen saturation time series.
  • Hemodialysis international. International Symposium on Home Hemodialysis
    June 19, 2022
    Estimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patients
    Lin-Chun Wang, Jochen G Raimann, Xia Tao, Priscila Preciado, Ohnmar Thwin, Laura Rosales, Stephan Thijssen, Peter Kotanko, Fansan Zhu
    DISCUSSIONAlthough segmental eight-point bioimpedance techniques provided comparable TBW measurements not affected by standing over a period of 10-15 min, the ECW/TBW ratio appeared to be significantly lower in InBody compared with Seca and Hydra. Results from our study showed lack of agreement between different bioimpedance devices; direct comparison of ECW, ICW, and ECW/TBW between different devices should be avoided and clinicians should use the same device to track the fluid status in their HD population in a longitudinal direction.INTRODUCTIONSegmental eight-point bioimpedance has been increasingly used in practice. However, whether changes in bioimpedance analysis components before and after hemodialysis (HD) using this technique in a standing position is comparable to traditional whole-body wrist-to-ankle method is still unclear. We aimed to investigate the differences between two eight-point devices (InBody 770 and Seca mBCA 514) and one wrist-to-ankle (Hydra 4200) in HD patients and healthy subjects in a standing position.FINDINGSOverall, total body water (TBW) was not different between the three devices, but InBody showed lower extracellular water (ECW) and higher intracellular water (ICW) compared to the other two devices. When intradialytic weight loss was used as a surrogate for changes in ECW (∆ECW) and changes in TBW (∆TBW), ∆ECW was underestimated by Hydra (-0.79 ± 0.89 L, p < 0.01), InBody (-1.44 ± 0.65 L, p < 0.0001), and Seca (-0.32 ± 1.34, n.s.). ∆TBW was underestimated by Hydra (-1.14 ± 2.81 L, n.s.) and InBody (-0.52 ± 0.85 L, p < 0.05) but overestimated by Seca (+0.93 ± 3.55 L, n.s.).METHODSThirteen HD patients were studied pre- and post-HD, and 12 healthy subjects once. Four measurements were performed in the following order: InBody; Seca; Hydra; and InBody again. Electrical equivalent models by each bioimpedance method and the fluid volume estimates by each device were also compared.
  • The International journal of artificial organs
    January 25, 2022
    Proportional integral feedback control of ultrafiltration rate in hemodialysis
    Sabrina Casper, Doris H Fuertinger, Leticia M Tapia Silva, Lemuel Rivera Fuentes, Stephan Thijssen, Peter Kotanko
    RESULTSIn all tests, the ultrafiltration controller performed as expected. In the in silico and ex vivo bench experiments, the controller showed robust reaction toward deliberate disruptive interventions (e.g. signal noise; extreme plasma refill rates). No adverse events were observed in the clinical study.CONCLUSIONSThe ultrafiltration controller can steer RBV trajectories toward desired RBV ranges while obeying to a set of constraints. Prospective studies in hemodialysis patients with diverse clinical characteristics are warranted to further explore the controllers impact on intradialytic hemodynamic stability, quality of life, and long-term outcomes.BACKGROUNDMost hemodialysis patients without residual kidney function accumulate fluid between dialysis session that needs to be removed by ultrafiltration. Ultrafiltration usually results in a decline in relative blood volume (RBV). Recent epidemiological research has identified RBV ranges that were associated with significantly better survival. The objective of this work was to develop an ultrafiltration controller to steer a patient's RBV trajectory into these favorable RBV ranges.METHODSWe designed a proportional-integral feedback ultrafiltration controller that utilizes signals from a device that reports RBV. The control goal is to attain the RBV trajectory associated with improved patient survival. Additional constraints such as upper and lower bounds of ultrafiltration volume and rate were realized. The controller was evaluated in in silico and ex vivo bench experiments, and in a clinical proof-of-concept study in two maintenance dialysis patients.
  • Hemodialysis international. International Symposium on Home Hemodialysis
    December 12, 2021
    Prevalence of fluid overload in an urban US hemodialysis population: A cross-sectional study
    Ulrich Moissl, Lemuel Rivera Fuentes, Mohamad I Hakim, Manuel Hassler, Dewangi A Kothari, Laura Rosales, Fansan Zhu, Jochen G Raimann, Stephan Thijssen, Peter Kotanko
    DISCUSSIONWhile about half of the patients had normal fluid status pre-HD, a considerable proportion of patients was either fluid overloaded or depleted, indicating the need for tools to objectively quantify fluid status.INTRODUCTIONInadequate fluid status remains a key driver of cardiovascular morbidity and mortality in chronic hemodialysis (HD) patients. Quantification of fluid overload (FO) using bioimpedance spectroscopy (BIS) has become standard in many countries. To date, no BIS device has been approved in the United States for fluid status assessment in kidney patients. Therefore, no previous quantification of fluid status in US kidney patients using BIS has been reported. Our aim was to conduct a cross-sectional BIS-based assessment of fluid status in an urban US HD population.FINDINGSWe studied 170 urban HD patients (age 61 ± 14 years, 60% male). Pre- and post-HD FO (mean ± SD), were 2.2 ± 2.4 and -0.2 ± 2.7 L, respectively. Pre-HD, 43% of patients were fluid overloaded, 53% normally hydrated, and 4% fluid depleted. Post-HD, 12% were fluid overloaded, 55% normohydrated and 32% fluid depleted. Only 48% of fluid overloaded patients were hypertensive, while 38% were normotensive and 14% hypotensive. Fluid status did not differ significantly between African Americans (N = 90) and Caucasians (N = 61).METHODSWe determined fluid status in chronic HD patients using whole body BIS (Body Composition Monitor, BCM). The BCM reports FO in liters; negative FO denotes fluid depletion. Measurements were performed before dialysis. Post-HD FO was estimated by subtracting the intradialytic weight loss from the pre-HD FO.
  • Toxins
    September 4, 2021
    Removal of Protein-Bound Uremic Toxins Using Binding Competitors in Hemodialysis: A Narrative Review
    Vaibhav Maheshwari, Xia Tao, Stephan Thijssen, Peter Kotanko
    Removal of protein-bound uremic toxins (PBUTs) during conventional dialysis is insufficient. PBUTs are associated with comorbidities and mortality in dialysis patients. Albumin is the primary carrier for PBUTs and only a small free fraction of PBUTs are dialyzable. In the past, we proposed a novel method where a binding competitor is infused upstream of a dialyzer into an extracorporeal circuit. The competitor competes with PBUTs for their binding sites on albumin and increases the free PBUT fraction. Essentially, binding competitor-augmented hemodialysis is a reactive membrane separation technique and is a paradigm shift from conventional dialysis therapies. The proposed method has been tested in silico, ex vivo, and in vivo, and has proven to be very effective in all scenarios. In an ex vivo study and a proof-of-concept clinical study with 18 patients, ibuprofen was used as a binding competitor; however, chronic ibuprofen infusion may affect residual kidney function. Binding competition with free fatty acids significantly improved PBUT removal in pre-clinical rat models. Based on in silico analysis, tryptophan can also be used as a binding competitor; importantly, fatty acids or tryptophan may have salutary effects in HD patients. More chemoinformatics research, pre-clinical, and clinical studies are required to identify ideal binding competitors before routine clinical use.
  • Blood purification
    August 10, 2021
    Gut Microbiome-Derived Uremic Toxin Levels in Hemodialysis Patients on Different Phosphate Binder Therapies
    Lin-Chun Wang, Leticia M Tapia, Xia Tao, Joshua E Chao, Ohnmar Thwin, Hanjie Zhang, Stephan Thijssen, Peter Kotanko, Nadja Grobe
    RESULTSThe SEV group reported a 3.3-fold higher frequency of BSS stool types 1 and 2 (more likely constipated, p < 0.05), whereas the SFO group reported a 1.5-fold higher frequency of BSS stool types 5-7 (more likely loose stool and diarrhea, not significant). Participants in the SFO group showed a trend toward better adherence to phosphate binder therapy (SFO: 87.6% vs. SEV: 66.6%, not significant). UTOX, serum phosphorus, nutritional and liver function markers, and tryptophan were not different between the two groups.CONCLUSIONThere was no difference in the gut microbiome-derived UTOX levels between phosphate binders (SFO vs. SEV), despite SFO therapy resulting in fewer constipated participants. This pilot study may inform study design of future clinical trials and highlights the importance of including factors beyond bowel habits and their association with UTOX levels.INTRODUCTIONConstipation is prevalent in patients with kidney failure partly due to the use of medication, such as phosphate binders. We hypothesized that serum levels of gut microbiome-derived uremic toxins (UTOX) may be affected by the choice of phosphate binder putatively through its impact on colonic transit time. We investigated two commonly prescribed phosphate binders, sevelamer carbonate (SEV) and sucroferric oxyhydroxide (SFO), and their association with gut microbiome-derived UTOX levels in hemodialysis (HD) patients.METHODSWeekly blood samples were collected from 16 anuric HD participants during the 5-week observational period. All participants were on active phosphate binder monotherapy with either SFO or SEV for at least 4 weeks prior to enrollment. Eight UTOX (7 gut microbiome-derived) and tryptophan were quantified using liquid chromatography-mass spectrometry. Serum phosphorus, nutritional, and liver function markers were also measured. For each substance, weekly individual levels, the median concentration per participant, and differences between SFO and SEV groups were reported. Patient-reported bowel movements, by the Bristol Stool Scale (BSS), and pill usage were assessed weekly.
  • Mathematical biosciences and engineering
    June 21, 2021
    A mathematical model of the four cardinal acid-base disorders
    Alhaji Cherif, Vaibhav Maheshwari, Doris Fuertinger, Gudrun Schappacher-Tilp, Priscila Preciado, David Bushinsky, Stephan Thijssen, Peter Kotanko
    Precise maintenance of acid-base homeostasis is fundamental for optimal functioning of physiological and cellular processes. The presence of an acid-base disturbance can affect clinical outcomes and is usually caused by an underlying disease. It is, therefore, important to assess the acid-base status of patients, and the extent to which various therapeutic treatments are effective in controlling these acid-base alterations. In this paper, we develop a dynamic model of the physiological regulation of an HCO3-/CO2 buffering system, an abundant and powerful buffering system, using Henderson-Hasselbalch kinetics. We simulate the normal physiological state and four cardinal acidbase disorders: Metabolic acidosis and alkalosis and respiratory acidosis and alkalosis. We show that the model accurately predicts serum pH over a range of clinical conditions. In addition to qualitative validation, we compare the in silico results with clinical data on acid-base homeostasis and alterations, finding clear relationships between primary acid-base disturbances and the secondary adaptive compensatory responses. We also show that the predicted primary disturbances accurately resemble clinically observed compensatory responses. Furthermore, via sensitivity analysis, key parameters were identified which could be the most effective in regulating systemic pH in healthy individuals, and those with chronic kidney disease and distal and proximal renal tubular acidosis. The model presented here may provide pathophysiologic insights and can serve as a tool to assess the safety and efficacy of different therapeutic interventions to control or correct acid-base disorders.
  • The International journal of artificial organs
    May 31, 2021
    Dextrose solution for priming and rinsing the extracorporeal circuit in hemodialysis patients: A prospective pilot study
    Paul A Rootjes, Erik Lars Penne, Georges Ouellet, Yanna Dou, Stephan Thijssen, Peter Kotanko, Jochen G Raimann
    RESULTSSeventeen chronic HD patients (11 males, age 54.1 ± 18.7 years) completed the study. The average priming and rinsing volumes were 236.7 ± 77.5 and 245.0 ± 91.8 mL respectively. The mean IDWG did not significantly change (2.52 ± 0.88 kg in Phase 1; 2.28 ± 0.70 kg in Phase 2; and 2.51 ± 1.2 kg in Phase 3). No differences in blood pressures, intradialytic symptoms or thirst were observed.MATERIALS AND METHODSWe enrolled non-diabetic and anuric stable HD patients. First, the extracorporeal circuit was primed and rinsed with approximately 200-250 mL of isotonic saline during 4 weeks (Phase 1), subsequently a similar volume of a 5% dextrose solution replaced the saline for another 4 weeks (Phase 2), followed by another 4 weeks of saline (Phase 3). We collected data on interdialytic weight gain (IDWG), pre- and post-dialysis blood pressure, intradialytic symptoms, and thirst.CONCLUSIONSReplacing saline by 5% dextrose for priming and rinsing is feasible in stable HD patients and may reduce intradialytic sodium loading. A non-significant trend toward a lower IDWG was observed when 5% dextrose was used. Prospective studies with a larger sample size and longer follow-up are needed to gain further insight into the possible effects of using alternate priming and rinsing solutions lowering intradialytic sodium loading.TRIAL REGISTRATIONIdentifier NCT01168947 ( sodium intake and consequent volume overload are major clinical problems in hemodialysis (HD) contributing to adverse outcomes. Saline used for priming and rinsing of the extracorporeal circuit is a potentially underappreciated source of intradialytic sodium gain. We aimed to examine the feasibility and clinical effects of replacing saline as the priming and rinsing fluid by a 5% dextrose solution.
  • Kidney international
    February 17, 2021
    The time of onset of intradialytic hypotension during a hemodialysis session associates with clinical parameters and mortality
    David F Keane, Jochen G Raimann, Hanjie Zhang, Joanna Willetts, Stephan Thijssen, Peter Kotanko
    Intradialytic hypotension (IDH) is a common complication of hemodialysis, but there is no data about the time of onset during treatment. Here we describe the incidence of IDH throughout hemodialysis and associations of time of hypotension with clinical parameters and survival by analyzing data from 21 dialysis clinics in the United States to include 785682 treatments from 4348 patients. IDH was defined as a systolic blood pressure of 90 mmHg or under while IDH incidence was calculated in 30-minute intervals throughout the hemodialysis session. Associations of time of IDH with clinical and treatment parameters were explored using logistic regression and with survival using Cox-regression. Sensitivity analysis considered further IDH definitions. IDH occurred in 12% of sessions at a median time interval of 120-149 minutes. There was no notable change in IDH incidence across hemodialysis intervals (range: 2.6-3.2 episodes per 100 session-intervals). Relative blood volume and ultrafiltration volume did not notably associate with IDH in the first 90 minutes but did thereafter. Associations between central venous but not arterial oxygen saturation and IDH were present throughout hemodialysis. Patients prone to IDH early as compared to late in a session had worse survival. Sensitivity analyses suggested IDH definition affects time of onset but other analyses were comparable. Thus, our study highlights the incidence of IDH during the early part of hemodialysis which, when compared to later episodes, associates with clinical parameters and mortality.
  • Blood purification
    January 28, 2021
    Hepatitis B Vaccination Response in Hemodialysis Patients: The Impact of Dialysis Shift
    Maggie Han, Xiaoling Ye, Sharon Rao, Schantel Williams, Stephan Thijssen, Jeffrey Hymes, Franklin W Maddux, Peter Kotanko
    RESULTSPatients were 65 years old, 57% male, and had a HD vintage of 10 months. Patients whose dialysis treatments started before 8:30 a.m. were more likely to be younger, male, and have a greater dialysis vintage. Patients receiving Engerix B® and starting dialysis before 8:30 a.m. had a significantly higher seroconversion rate compared to patients who started dialysis after 8:30 a.m. Early dialysis start was a significant predictor of seroconversion in univariate and multivariate regression including male gender, but not in multivariate regression including age, neutrophil-to-lymphocyte ratio, and vintage.CONCLUSIONWhile better sleep following vaccination is associated with seroconversion in the general population, this is not the case in hemodialysis patients after multivariate adjustment. In the context of end-stage kidney disease, early dialysis start is not a significant predictor of HB vaccination response. The association between objectively measured postvaccination sleep duration and seroconversion rate should be investigated.BACKGROUND/AIMSHepatitis B (HB) vaccination in hemodialysis patients is important as they are at a higher risk of contracting HB. However, hemodialysis patients have a lower HB seroconversion rate than their healthy counterparts. As better sleep has been associated with better seroconversion in healthy populations and early hemodialysis start has been linked to significant sleep-wake disturbances in hemodialysis patients, we examined if hemodialysis treatment start time is associated with HB vaccination response.METHODSDemographics, standard-of-care clinical, laboratory, and treatment parameters, dialysis shift data, HB antigen status, HB vaccination status, and HB titers were collected from hemodialysis patients in Fresenius clinics from January 2010 to December 2015. Patients in our analysis received 90% of dialysis treatments either before or after 8:30 a.m., were negative for HB antigen, and received a complete series of HB vaccination (Engerix B® or Recombivax HB™). Univariate and multivariate regression models examined whether dialysis start time is a predictor of HB vaccination response.
  • Scientific reports
    July 9, 2020
    A model-based analysis of phenytoin and carbamazepine toxicity treatment using binding-competition during hemodialysis
    Vaibhav Maheshwari, Robert S Hoffman, Stephan Thijssen, Xia Tao, Doris H Fuertinger, Peter Kotanko
    Hemodialysis (HD) has limited efficacy towards treatment of drug toxicity due to strong drug-protein binding. In this work, we propose to infuse a competitor drug into the extracorporeal circuit that increases the free fraction of a toxic drug and thereby increases its dialytic removal. We used a mechanistic model to assess the removal of phenytoin and carbamazepine during HD with or without binding-competition. We simulated dialytic removal of (1) phenytoin, initial concentration 70 mg/L, using 2000 mg aspirin, (2) carbamazepine, initial concentration 35 mg/L, using 800 mg ibuprofen, in a 70 kg patient. The competitor drug was infused at constant rate. For phenytoin (~ 13% free at t = 0), HD brings the patient to therapeutic concentration in 460 min while aspirin infusion reduces that time to 330 min. For carbamazepine (~ 27% free at t = 0), the ibuprofen infusion reduces the HD time to reach therapeutic concentration from 265 to 220 min. Competitor drugs with longer half-life further reduce the HD time. Binding-competition during HD is a potential treatment for drug toxicities for which current recommendations exclude HD due to strong drug-protein binding. We show clinically meaningful reductions in the treatment time necessary to achieve non-toxic concentrations in patients poisoned with these two prescription drugs.

Working with Renal Research Institute allows me to contribute to innovations that improve the lives of patients on a much larger scale.

Stephan Thijssen, MD
Vice President, Applied and Basic Research