Xin Wang, PhD

Senior Research Scientist

Xin Wang

Xin joined RRI as senior research scientist in August 2020. He holds a PhD in genetics and a master's degree in computer science. He brings to the laboratory team at RRI a diverse set of skills including expertise in molecular biology, genetics, genomics, and bioinformatics. Prior to joining RRI, he had worked for more than ten years at Memorial Sloan Kettering Cancer Center, where he conducted research to study mechanisms of gene regulation and roles of aberrant gene regulation in cancer using a combination of molecular biological, biochemical, and computational approaches. Xin has published many articles in high impact journals such as Cell and Current Biology. In his role of senior research scientist at RRI, he now works on various metabolomics research projects with aim to improve care for patients with renal disease.

Recent Articles by Xin Wang

  • Blood purification
    February 16, 2024
    Molecular Insights and Novel Approaches toward Individualized Arteriovenous Fistula Care
    Xin Wang, Leticia M Tapia Silva, Milind Nikam, Sandip Mitra, Syed Shaukat Abbas Zaidi, Nadja Grobe
    The aim of the paper is to summarize the current understanding of the molecular biology of arteriovenous fistula (AVF). It intends to encourage vascular access teams, care providers, and scientists, to explore new molecular tools for assessing the suitability of patients for AVF as vascular access for maintenance hemodialysis (HD). This review also highlights most recent discoveries and may serve as a guide to explore biomarkers and technologies for the assessment of kidney disease patients choosing to start kidney replacement therapy. Objective criteria for AVF eligibility are lacking partly because the underlying physiology of AVF maturation is poorly understood. Several molecular processes during a life cycle of an AVF, even before creation, can be characterized by measuring molecular fingerprints using newest "omics" technologies. In addition to hypothesis-driven strategies, untargeted approaches have the potential to reveal the interplay of hundreds of metabolites, transcripts, proteins, and genes underlying cardiovascular adaptation and vascular access-related adjustments at any given timepoint of a patient with kidney disease. As a result, regular monitoring of modifiable, molecular risk factors together with clinical assessment could help to reduce AVF failure rates, increase patency, and improve long-term outcomes. For the future, identification of vulnerable patients based on the assessment of biological markers of AVF maturation at different stages of the life cycle may aid in individualizing vascular access recommendations.
  • Toxins
    September 1, 2023
    Bisphenol A and Bisphenol S in Hemodialyzers
    Zahin Haq, Xin Wang, Qiuqiong Cheng, Gabriela F Dias, Christoph Moore, Dorothea Piecha, Peter Kotanko, Chih-Hu Ho, Nadja Grobe
    Bisphenol A (BPA)-based materials are used in the manufacturing of hemodialyzers, including their polycarbonate (PC) housings and polysulfone (PS) membranes. As concerns for BPA's adverse health effects rise, the regulation on BPA exposure is becoming more rigorous. Therefore, BPA alternatives, such as Bisphenol S (BPS), are increasingly used. It is important to understand the patient risk of BPA and BPS exposure through dialyzer use during hemodialysis. Here, we report the bisphenol levels in extractables and leachables obtained from eight dialyzers currently on the market, including high-flux and medium cut-off membranes. A targeted liquid chromatography-mass spectrometry strategy utilizing stable isotope-labeled internal standards provided reliable data for quantitation with the standard addition method. BPA ranging from 0.43 to 32.82 µg/device and BPS ranging from 0.02 to 2.51 µg/device were detected in dialyzers made with BPA- and BPS-containing materials, except for the novel FX CorAL 120 dialyzer. BPA and BPS were also not detected in bloodline controls and cellulose-based membranes. Based on the currently established tolerable intake (6 µg/kg/day), the resulting margin of safety indicates that adverse effects are unlikely to occur in hemodialysis patients exposed to BPA and BPS quantified herein. With increasing availability of new data and information about the toxicity of BPA and BPS, the patient safety limits of BPA and BPS in those dialyzers may need a re-evaluation in the future.

Renal Research Institute strives to improve the outcomes of patients with kidney disease through research and innovation. I am proud to be a member of its research team.

Xin Wang
Senior Research Scientist